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ANALYSIS OF  A FREQUENCY  TRACKING SQUARE 
WAVE OSCILLATOR 

R. W. Gunderson 

SUMMARY 

Presented  in  this  report   is   an  analysis of the  lock- 
on oscillator  used as an  element  in  the  adaptive  track- 
ing  notch  (ATN) filter currently  under  development 
at  Marshall  Space  Flight  Center.  The  analysis  is  ac- 
complished by studying  the  phase  space  behavior of 
the  variables  describing  operation of the  system  and 
permits  expressions  to be  developed  through  which 
important  properties of the  oscillator  may be pre- 
dicted.  Examples  are  given  and  results of a theoretical 
study are   compared with results  obtained  from  a 
breadboard  mechanization of the  system. 

SECTION I. INTRODUCTION 

The  Flight  Dynamics  Branch of the  Astrionics 
Laboratory  has  recently  designed,  built,   and  tested 
an adaptive  tracking  notch ( A T N )  filter  capable of 
identifying  and  attenuating  very low frequency  signals 
such as those  arising  from  the  effect of body bending 
dynamics in the  Saturn  class  booster  vehicles.  The 
basic  ideaof  the  ATNfilter  is  to  copstruct a reversed- 
phase  bending  signal  through  modulation  techniques 
and  then  to  sum  the  constructed  signal  with  the  input 
signal,  thereby  accomplishing  the  attenuation.  The 
present  configuration  has  been  designed  to  operate 
throughout a frequency band of 0 . 7  to 1. 4 Hz,  while 
producinganattenuation of at least  20 to i through  that 
range.  The ATN fi l ter   has  no attenuation  effect  at 
control  mode  frequencies  and  less  than 5 degrees of 
introduced  phase  lag. A comprehensive  discussion  on 
the  ATN filter is  given  in  the  report by Borelli  and 
Hosenthien  (Ref. i) . 

The  lock-on  oscillator is driven by a square  wave 
input of constant  amplitude  at  the  bending  mode fre- 
quency.  Its  function is to  provide  two  square  wave 
output signals at the  same  bending  frequency but  with 
a 90-degree  relative  phase  shift.  Consequently,  the 
unit must  be  capable of locking  onto  the  input  frequency 
throughout  the  desired  bandwidth  and  maintaining  the 
quadrature  phase  relationship of the  output  signals  as 
an  invariant  feature. 

The  analysis  was  accomplished by studying  the 
phase  space  behavior of the  differential  equations  de- 

scribing  the  system  operation.  Verification of the 
analytical  results  was first obtained  through  an  analog 
simulationof  the  system;  simulation  and  analytical re- 
sults  were in close  correspondence. A breadboard 
mechanization of the  oscillator  was  then  developed; 
theoretical  results  and  test  results  were  also in close 
correspondence. 

SECTION 11. LOCK-ON OSCILLATOR 

The  essential  features of the  unit a r e  shown  in 
Figure 1. 

x relay y re lay 

I I ' I  
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FIGURE i. BLOCK  DIAGRAM OF LOCK-ON 
OSCILLATOR 

The  x  and  y  relays are identical  except  for  being 
of opposite  polarity  and are assumed  to  be  capable of 
instantaneous  switching  action.  Switching  levels of the 
relays are denoted by x1 and  yi  while  the  output  level 
is  denoted by f M. The  absolute  value of the  input, 
I( t) , is the  same as the  absolute  value of the  relay 
outputs ; that   i s ,  II( t)l = M. For   purposes  of the  analog 
simulation,  the  nonlinear  characteristic of the x and  y 
relays  was  obtained  through  the  use of nonlinear, high 
gain  feedback  methods as given  in a paper  by T e r r a z a s  
and  Fannin  (Ref. 2 ) .  The  circuitry  allowed a great  
deal of versatility  coupled  with  a  precise  Simulation 
of the  desired  nonlinearity. 



SECTION 111. FREE-RUNNING  CASE, I( t) 0 

The  behavior of the  system  will   f irst  be studied 
in its free-running  condition;  that is, with  the  input 
I( t )  0 for   a l l   t  2 0. By studying  the  behavior of the 
trajectories  inthe  two-dimensional  phase  space of the 
variables  xand  y,  an  insight  will be gained  into  system 
operation  and  an  equation  for  the  period of the  limit 
cycle  will be derived. 

Assume  thatthe  values  f(x)  and  f(y)  remain con- 
stant  during  the  time  interval  t ,  5 t > to.  Since  I(t) = 
0 ,  the  differential  equations  describing  the  operation 
of the  system  during  that  interval are written as 

The  solutions of the two equations,  valid  during  t, 2 
t > to ,  are obtained  in  the  form 

r 1 

The  differential  equations (1) provide  the  differential 
equation of the  trajectories  as 

From  equation ( 3 ) ,  it is apparent  that  the  system  will 
have a singular  point,   or  equilibrium,  at   the  point df 
the x-y space  given by 

x =  a 

The  trajectory  will  then  originate  at  the  point  (x(to), 
y ( t o ) )  and  tend  toward  the  singularity  determined by 
equation (4) along  the  straight  line 

as given by the  solution of equation ( 3 )  . If a t   t ime t = 
t, ei ther  f(x)  or  f(y)  should  change  polarity,   the  sys- 
tem  will  enter a new mode of operation. Here the 
initial  conditions are the  f inal   values  (x(tl)  , y ( t i ) )  of 
the  preceding  mode  and  the  singularity  will  change 

with  equation ( 4 ) .  In this  manner,  it is possible  to 
follow  the  system  through  its  succeeding  modes of op- 
eration. 

Fo r  example,  assume  that  the  system  begins  op- 
eration  at   t ime  t  = 0 and is such  that  x(0) = y (  0) = 0 
while  the  output of both relays  is  initially  negative. 
The  trajectory  will  initially  try  to  reach a singularity 
at  the  point ("/a, "/a) and  will  tend  toward  that 
point  on  the  straight.  line  given by equation (5) , as 
shown  in  Figure 2. However,  when  the  trajectory in- 
tersects  the  switching  line  y = -y,,  the  y  relay  will 
switch  polarity  to +M and  the  trajectory  will  tend  to- 
ward  a new singular i ty   a t   (M/a,  "/a). When the 
trajectory  intersects  the  switching  line  x = xi,  the 
system  will  again  assume a new singular i ty   a t  ( M / a ,  
M/a)  and so on. 

l 

I (: 2-) 
FIGURE 2. TYPICAL FREE-RUNNING 

TRAJECTORY 

SECTION N. LIMIT  CYCLE 

As  shown by Figure 2,  the  trajectory  soon  con- 
verges  to  a  closed  curve  about  the  origin;  that is, the 
system  possesses a stable  limit  cycle.  To  determine 
exactly  the  path of the  limit  cycle,  it  is necessary 
only to  calculate  one  point on that  curve,  since knowl- 
edge of that  point  and  the  singularities  allows  con- 
struction of the  rest  of the  curve.  Consequently,  let 
x(to)  be  some  point  along  the  switching  line  y = y, and 
let   f(x)  and  f(y)  have  the  values  M and  -M,  respec- 
tively.  From  equation (5) the  equation of the first 
straight  line se-gment of the  trajectory is then 

y - c  - Y1-c 
x + c  x ( t o )   + c  ( 6)  

2 



where so that  the  complete  period of the  l imit   cycle is ob- 
tained as 

, c = -  . M 
a 

I 

The  trajectory will  tend  toward  the  singuiarity  at 
("/a, M/a)  but  will  intersect  the -xi switching  line 
at   some  t ime  t  = ti. A t  time  ti,   the  system  begins a 
new mode of operation  and  tries to reach  the  singular- 
i ty  at  ("/a, "/a). Taking  into  account  the  sym- 
met ry  of trajectory  behavior,  if the  trajectory  inter- 
sects  the  -yi  switching  line  at  the  point  -x(tO) , then 
the  trajectory is the  curve of the  limit  cycle. 

At t = ti ,   equation ( 6 )  becomes 

Accordingly,  the  initial  conditions  for  the  second op- 
eration  mode  are 

and  the  equation of the  trajectoly  becomes 

for   t  2 t , .   This  part  of the  trajectory  intersects  the 
y = -yi  switching  line. A s  previously  explained, if it 
is to be the  equation of the  limit  cycle, it must be that 
x ( tz )  = -x(to)  where t, is  the  time of intersection  with 
the  -y,  switching  line.  That  is, 

and solving  for  x(  to)  yields 

x(t0) = C ( X 1  + y1) - xiyi . 
The  period of the  limit  cycle  can now be derived 

by using  the  initial  conditions  as  calculated  above.  To 
do so ,  symmetry  considerations  show  it is necessary 
to  solve  only  for  the  time  required  to  travel  from  the 
calculated  point  (x(  to) , yi) to ( -xi ,   y i )  , since  this 
furnishes  the  time of the  quarter-period. 

From  equation ( 2 )  and  equation (10) 

r- 1 

SECTION V. DRIVEN CONDITION 

The ATN filter  concept  presently  requires  the 
lock-on  oscillator  to be driven by a square  wave  input 
signal  at  the  bending  frequency  when  the  amplitude of 
the  bending  signal  exceeds a certain  preset  value. 
When operating  under  the  driven  condition,  it  is re- 
quired  that  the  system  produce two symmetrical   square 
wave  outputs, f (  x)  and f (y)  , which are to be at the 
bending  frequency  with a quadrature  phase  relation- 
ship.  Since  the  bending  mode  frequencies  vary  as 
a function of t ime of flight,  the  oscillator  must follow 
the  frequency of the  input  throughout  the  expected  range 
of variation  with  the  property of the  quadrature  phase 
relationship  kept  essentially  invariant. 

Consider  the  system  during a time  interval to < 
t 5 ti   for  which  the  values of f (x) , f (y),  and  I(  t) are 
constant.  The  differential  equations  describing  the op- 
eration  during  that  interval are 

d X(t) 
dt + a x ( t )  = f ( y )  

The  equations  for  x(  t)  and  y(t),  valid  during to < t 5 t i ,  
a r e  obtained  from  equation ( 12) as 

r 1 

L 
1 

and  the  differential  equation of the  trajectory  becomes 

d~ = f ( x )  + I ( t )  - ay 
dx f ( Y )  - ax  

Equation ( 14) determines  the  location of the  singular- 
ity as 

x =  
f ( X )  + I ( t )  

a 
w h e r e ,  s ince   f (x) ,   f (y) ,   and   I ( t )   a l l   have   the   same 
magnitude  but  can  differ  in  polarity,  there are now the 
six  possible  singularities  shown in Figure 3. 

3 
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FIGURE 3. SINGULARITIES  FOR  THE  DRIVEN 
CASE AND  BOUNDS FOR THE 
TRAJECTORY 

Generally,  the  phase space study of system be- 
havior  is  considerably  complicated by the  introduction 
of a time  dependent  driving  function.  For  example, in 
the  undriven  case, if the  trajectol-y  intersects a switch- 
ing  l ine  at  a point ( si, y,) , then  the  trajectory  must 
continue  along  the  straight !ine drawn  from  that  point 
to  the  singularity  in  the  following  quadrant.  That  is, 
a unique  segment of the  trajectoly  originates  from 
each  point  on a switching  line  and  this  segment  can  be 
determined  simply by knowledge of singularity  loca- 
tions.  However,  in  the  driven case, an infinite  number 
of possible   paths   for   the  t ra jectoly  exis t   for   each  point  
on a switching  line.  Such a ciraumstance  results  from 
the  presence of the   I ( t )   t e rm,  a time  dependent  func- 
tion, in the  expression  for  the  singularities  given by 
eqtiation (15 ) .  On the  other  hand,  particularly  since 
I( t) is a square  wave  function  with  known  period  and 
amplitude,  the  phase  space  approach  still   provides a 
comparatively  convenient  method  for  answering  the 
required  questions on oscillator  behavior. 

Consider  first  the  shaded  region of the  phase  space 
shown  in  Figure 3. Under  the  system  design  philoso- 
phy,  the  lock-on  oscillator  will  always  be  in  its free- 
running  condition  before  an  input signal is  applied. 
Consequently,  the  trajectories  to  be  considered  will 
both  begin  and  remain  in a region  such as that  shown 
in  Figure 3. The  boundaly of the  region is constructed 

4 

simply by consideringthe  extreme  possibil i t ies of tra- 
jectory  behavior.   For  example,   trajectories  origi-  
nating at the  point  (M/a, y,) will  initially  tend  toward 
the  singularit ies 

The  two  extreme  possibilities are  thus  the  straight 
lines  continued  toward  the  singularities  until  intersec- 
tion  with  the -x1 switching  lines. 

. 

I 

I 

J I I 

FIGURE 4. PERIODIC  TRAJECTORY  FOR  THE 
DRIVEN CASE 

Now consider  the  closed  trajectory of Figure 4. 
In addition to the  four  switching  points  caused by in- 
tersectior. of the  curve  with  the  x  and y switching  lines, 
it is now necessary  to  locate the  switching  points  caused 
by a change of polarity  in  the  driving  signal,  I(t).  
During  the  time  interval  to < t 5 t i   whenthe  trajectory 
is  traveling  between  points p ( to)  and p (  ti) , the  equa- 
tions of the x  and  y  motions are given by 

and 

At t = ti the  polarity of I( t) changes  from + M to - M 
so  that  the  equation of the  y  motion  during  the  interval 
t, < t 5 t, is changed  to 
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while  the  x  motion  is  unchanged.  The  trajectory  con- 
tinues in like  manner  until T1/2 seconds  after  the 
change of polarity  at p( ti) , when  the  input  once  again 
changes  sign. If now 

= ( - x ( t d ,  -Ylti) 1 = - P ( t i ) ,  

then,  as  time  continues,  the  trajectory  must  return 
to  the  starting  point  p(t,) so that 

sf t + TI/2) = - x( t) 

A.ft + TI/?) = - y ( t )  . 
\\'it11 the  exception of cluaclrature phase relation- 

ship I~et\\.ccn f(s) and f ( y )  , a  periodic  trajectoly  such 
a s  that of Figure 4 describes  the  desired  operation of 
the  lock-on  oscillator.  The  quadrature  phase  rela- 
tionship \\.ill be ol)tainecl  only if 

t, - t o  = t3 - t,. 

FIGURE 5. INPUT AND OUTPUT SQUARE  WAVES 
CORRESPONDING  TO THE PERIODIC 
TIMJECTORY  OF FIGURE 4 

Notice  that  the x motion  is  independent of I( t )  . 
flence i t  is I>ossible  to  solve  for  the  value of s f t )  at 
the  instant  the  y relay s\\ itches to its  negative  polarity 
and such  that,  after TI/2 seconds  la ter ,   xf t )  w i l l  be 
at  the  negative or this  value.  That  is,  it  is  possil)le 
to  solve lor the  xft)  values  at  the  instant of y  relay 
s\vitching  necessary to maintain  the  periodic  trajec- 

tory.  This  value  is  obtained  from  equation ( 13) as 

where x,, denotes  the  desired  value. 

If the  period of the  input  square  wave  I(t) is known, 
x. can  be  calculated  from  equation  (16)  and  the  peri- 
odic  trajectory  can  be  constructed as il lustrated by 
Figure  6 (a  and  b).  The  procedure is to draw first 
a straight  line  through  the  point  (-xo,  -yl)  and  the 
singularity in the  third  quadrant;  then  a  straight  line 
through ( xo, yl)  and  the  singularity in the  second  yuad- 
rant. If the two lines intersect  to  the  left of the -x1 
switching  line,  the two segments  are  connected as 
shown in Figure G (  a)  . If they  intersect  to  the  right 
of the -x, line,  then  the  segments  are  connected as 
sho\irn in Figure G ( I , )  . 

Equation ( I G )  indicates so will  decrease  with  the 
period of the  driving  signal.  Consequently  the  area 
enclosed by the  periodic  trajectories  indicating  satis- 
factoly behaviol' must  decrease  as  the  frequency of 
the  driving  signal  increases.  However,  as  illustrated 
by Figure 3 ,  there  is  a lower  limit to  the  enclosed 
area.  That  is,  the  closed  trajectories  indicating  sat- 
isfactory  behaviorcan  exist only for  afinite  frequency 
range of the  input square wave. It is  possible  to  write 
an analytic  cxpressioc  for  determining  the  frequency 
range:  ho\vcver, it  would seem more  convenient  to do 
so through  a  phase space construclion  procedure. 
F i r s t ,  notice  from  Figure G ( b )  that  the  t 'smallest" 
trajectory  corresponds  to  the  case when  the  y  relay 
and Ift)  polarity  changes  occur  simultaneously.  That 
is ,   the  segment of the  trajectory  lying on the  straight 
line  through (so, yl)  and  the  singularity in the  second 
quadrant  approaches  zero  length. i3egin the  trajectory 
at   the  point  (xl ,   y,)  , as  shown in Figure 7, and  con- 
tinue  towards  the  appropriate  singularities. By as- 
suming  the I( t)  polarity  changes  occur  at  the  instant 
of y  relay  switching,  it  is  found  that  the  curve  soon 
converges to  the  desired  smallest  periodic  trajectory. 

The  period,  TI,  corresponding  to  the  value of x. 
determined  can  then be obtained  through  equation ( iG) . 
Itcan be seen  from  equation (16) and  Figure  6(a)  that 
there  is  no lower  positive  limit  to  the  frequency  per- 
mitting  periodic  I~ehavior.  Consequently  the  desired 
periodic  trajectories  exist  for a frequency band ex- 
tending  from  arbitrarily  near  zero to  the  value  deter- 
mined  through  the  procedure  previously  given. 

To  this  point,  it  has  been  established  that  there 
exist only periodic  trajectories  indicating  satisfactory 
behavior of the  lock-on  oscillator.  Equation  (16) is 
only a  special   case of the  more  general  expression 
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FIGURE 6. CONSTRUCTION OF PERIODIC TRAJECTORmS FOR KNOWN VALUES OF XO 

. '  Y/ti 0 

I 
larity  k  times.  The  following  discussion  will show 
that  such  trajectories do exist ,  but only fo r  odd values 
of k. 

I 
I 

Theclosed  t ra jector ies  of Figure 8 typify  the  two 
types of trajectories  which  can  exist  for IC = 3. To 

the  y( t )   motion  a t   t  = t o  and  continue  until  t = ts  to  ob- 
ta in 

"_ solve  for  the  time  t, - to  of Figure 8( a)  , begin  with 

1 - 
y( t l )  = 2c + e -a ( t ,  - to) 

[ Y I  - 2cl  (to < t 5 t,) 

Y(t2) = e Y(t1) ( t ,  < t 5 t,) 
"- 

- a ( t ,  - t i)  

I (18) 

I y ( t3)  = -2c + e -a( t3  - t z )  [ y ( t z )  + 2c]  ( t ,  < t 5 t3).  

0 1 .  Y(t4) =.e  -a(t4 - t3) Y (t3)  (t, < t 5 t4) 

-ak T u 2  and  conbine  to  obtain 

y( t5)  = -2c + 2ce  -a(t5 - t4) -2ce-a(t5 - t3) 
x o = M  [: ] = c  tanh- 

ak  TI 
a -ak T1/2 4 

(17) 

( k  = I, 2 ,  3 ,  .. .)  + 2ce-a(t5 - tz)  + 2ce -a(t ,  - t l)  

which  provides  the  value of x(  t)  at  the  instant of y  re- 
lay  switching  necessary  to  maintain  periodic  trajec- 
tories  describing  subharmonic  tracking of the  system. 
That is, between  switching of the  relays  from  one po- 
larity  to  the  opposite,  the  input  will  have  changed PO- Since 

+ e  -a(t5 - to) (y l  - 2c).  
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substitution  into  equation  (19)  yields 

and  since 

.-a(tl - to) , .-a/2 TI 

the  inequality 

must  then be satisfied.  Let 

-a/2  TI s = e  

so that  from 

c + x(t5)  = c - c (; ::”,”,:: ;$= 

2c e 

(I + e  -3a/2  TI 
1 

-3a/2  TI 
- - 

and  from  equation  (22) , 

) 
i - s + s 2  

2 2  > i  
(i -2 (I +s3)  - 
\ 2c ( i + S 3 )  i - +  X 

For the  moment,  assume 

so that  inequality  (23)  becomes 

S(-S5 + 5 4  - s 3  + s2 + s - i) > 0 

o r  

Consequently  under  the  assumption  that xi/c  and  xi/2c 
are sufficiently  small,  inequality ( 2 2 )  is satisfied if 

i > s  > p $  

that   i s ,  

Rewriting  equation  (23) in  the  form 

( 1  - s + 2 )  ( 1  + S3) > ( i  - y1/2c) ( i  + s3) 

2s3 

- (I-?) 

and  noting  that 

( for   yi  > 0,  xi > 0,  < i) shows  that  inequality ( 25) 
provides  the  greates?  value,  TI,  for  which  closed  tra- 
jectories  corresponding  to k = 3,  and of the  form 
shown  in  Figure  8(a),  always  exist.  Given  values  for 
xi, yi,  and  c,  the  corresponding  maximum  value of 
TI  can  be  obtained by factoring  equation  (23)  in  the 
manner  shown  for  the  particular case of xi = yi = 0. 

Now consider  Figure 8( b)  and  start   again  at   t  = to 

X 

to  obtain 
( 23) 

y ( t i )  = 2c + e -a( t i  - to) I Y ~  - 2 ~ 1  (to < t 5 ti) (27) 



y(t3)  = 2c + e - tz)  [Y(t,) - 2cl ( t 2  < t 5 t 3 )  

y( t5)  = -2c + e - a ( t 5 - t 4 )  [ y ( t4 )  + 2cl  (t4 < t 5 t 5 )  

e -a(t5 - t 3 )  - c + x ( t d  
c - xi 

-a(t5 - tz) -a TI ea( ti - to) e = e  

,-a(t5 - ti) - -a3  TI/2  a( t ,  - to) - e  e 

Y 

I 
I 
I 

I ti 

,-a(t5 - to) - -3a/2 TI I 

Substituting  equation  (28)  into  equation  (27) , combin- 
ing,  and  solving  for e a ( h  - t o )  then  yield 

- e  

-3a T1/2) - c +x( ts) 
( 1  - yi/2c) (1 + e  

e ( I  - e 

X 

,a(tl - t o )  = c - xi 
-a TI/2 -a TI/2 + e-a TI) 

(29) 
I 

which is identical  with  equation  (21) . Consequently 
the  results  obtained  for  Figure  8( a) also hold fo r  Fig- 
ure   8 (  b) . 

b) 
Notice now that  the  trajectory  can  intersect  the 

positiveyl  switchingline  only if the  input signal polar- 
ity is positive  and  can  intersect  the  negative yi switch- 
ing  line  only if  the  input  polarity is negative.  Conse- 
quently  the  polarity of the input can  only  change  an 
odd number of times  between  positive  and  negative 
switching of the  y  relay.  That  is, I< of equation  (17) 
must  be  odd. 

Figure 9 i l lustrates  the  trajectory of next  highest 
o rder ,  I< = 5. The  expression  corresponding  to  equa- 
tion  (21) is obtained  in  the  same  manner  for IC = 5 and 
i s  of the  form 

1 :  I 

FIGURE  8.  PERIODIC TRAJ-ECTORIES CORRE- 
SPONDING TO k = 3 

FIGURE 9. PERIODIC  TRAJECTORY  CORRE- 
SPONDING TO k = 5 
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Trajector ies  
k =  I, k = 3 ,  

corresponding to 
k = 5  

1 I 

c 
J 

b)  Wave shapes  for  k = I c) Wave shapes  for  k = 3 

- t  I 
d)  Wave  shapes  for k = 5 

FIGURE 10. THREE  POSSIBLE  PERIODIC MODES OF OPERATION 
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SECTION VI. MECHANIZATION OF THE LOCK-ON 
OSCILLATOR 

must be true  before  inequality  (31) is satisfied.  That 
i s ,  

Figure 10 is a typical  case of a system  for  which 
trajectories  corresponding to IC = I ,  IC = 3,  and I< = 5 
exist   for a given  frequency.  The  time  response is 
shown for  each  case.  

The  discussion  above shows that  the  lowest  fre- 
quency of the  driving  signal  necessary  to  maintain a 
IC = 5 trajectory  must  be  greater  than  the  lowest  fre- 
cluency necessaly  for  a trajectory of IC = 3. In exactly 
the samemanner ,   t ra jector ies   corresponding to Ic val- 
ues  greater  than 5 can  be  shown  to  exist only  for  in- 
put  signal  frequencies which satisfy  inequality  (32). 
Inasmuch  as  the  particular  application of the  lock-on 
oscillator  being  considered  here  requires  tracking 
through a frequency  range of 0.7 to 1. 4 Hz (page 1) , 
no difficulty  with  subharmonic  lock-on  operation  should 
be expected  providing  that  the  ratios  x,/c << 1, yi/2c 
<< I are satisfied. 

Let  the y1 switching  line be taken as a reference 
and  assume  that  the  system has been  driven  to  the  de- 
sired  periodic  behavior;  that  is, l< = l. A n  expression 
for   the   e r ror  in the  desired  quadrature  phase  relation- 
ship  between  the  relay  outputs f (  x) and f (y)   can  he 
obtained in the  following  manner.  The  time  elapsing 
from  instant of y  relay  switching  to x relay  switching 
canbe  obtaineclby solving  the  equation of the s( t )  mo- 
t ion 

-x, = -c + e ( X e  + C)  
- ( t  - t o ) a  

for   t  - to.  Substituting  for x. as given by equation ( I G )  
into  the  expression  leads to 

1 c (1 + tanh 9) t - t o  = -  en 
4 

a  c - xi 
(33) 

If the  output  wave  shapes  have  quadrature  phase  re- 
lationship, then  the x relay  must  change  polarity  ex- 
actly  TI/4  seconds  after  the  y  relay.  The  last  term 
of equation ( 33) therefore  furnishes  the  deviation  from 
the  desired  phase  relationshit) as 

A@ =- 
a TI 

I - xl/c)  cosh - ( radians)  . (34) 
- a  4 "I 

The  lock-on  oscillator  circuit shown in  Figure I I 
was developed by H. Daniels, H. Farrow,  and H. 
Hosenthien of the  Flight  Dynamics  Branch,  Astrionics 
Laboratory. It was  found  that  the  circuit  possessed 
not  only good lock-on  characteristics  over  the  espect- 
ed  frequency  range, but also  produced  symmetrical 
output  square  waves  with a relatively  small  inherent 
e r r o r  in the  quadrature  phase  relationship. A tes t  
ca se  was run  to  present a comparison betLveen esperi-  
mental  results  and  the  corresponding  theoretical  re- 
sults  obtained  through  equations  derived  in  the  pre- 
ceding  analysis.  The  circuit  values used Ivere  those 
shown in Figure 11: in par t icular ,  with a 5 p F  input 
capacitor  to  the two relay  sections.  Table I presents 
a comparison of the  theoretical  and  measured  results 
for  the  conditions of free-run (no input)  and  with in- 
put s ignal   ( I ( t ) )   f requencies  of 0 .7 ,  i. 0 ,  and 1. 4 Hz. 

TABLE 1. COMPARISON OF  THEORETICAL AND 
MEASURED  RESULTS  FOR  THE LOCK-ON 

OSCILLATOR  CIRCUIT OF FIGURE 7 

1 
CASE !;ONDI'TIO 

C = 5pF Free-Run 

C = 5pF fI  = .7Hz 

' 

lr PREDICTED " - 7  
A N &  

0 

. .. - 

9.04 
~ ~~ 

4. 12 

.07  

~ 

I 2.0 

I 

A few comments  are  necessary  with  regard  to  the 
circuit.  The  relays  were not subjected to direct  anal- 
ysis  to  obtain  nonlinear  characteristics, but were 
treated as tlblacl<  bosest'and obtainecl experimentally. 
Figure  12  shows  the s relay  characteristic  taken  from 
an oscilloscope  display  when  the  circuit was in the 
free-run  condition. A s  can be seen,  the  actual  char- 
acterist ic  isvely  nearly  that  of the  idealized  case as- 
sumed in the  preceding  development of the  equations. 
In the  free-run  conditions,  account  must  be  taken of 
the  RC  integrating  networks on the  form of the  derived 
equations;  however,  the  situation is othelvise  un- 
changed  from  that  assumed  previously. 
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FIGURE 11. LOCK-ON OSCILLATOR  CIRCUIT DIAGRAM 

FIGURE 12. X RELAY CHARACTERISTIC 

The  following  parameters are obtained  from  the cir- 
cuit  diagram of Figure 11: 

a = .7636 

c = 10.714. 

Switching  levels  were  obtained as 

xi = y1 = . 1. 
According  to  equation ( 1 1) , the  period of the free- 
running  limit  cycle is given by 

Tf.r. a 
The  intersection of the  free-run  trajectoly  with  the  yi 
switching  line is given by 

= 4 Pn[c + ?Ic(xi + ~ 1 )  - X ~ Y I  = . 7Zs . 
c - x* 3 

XO =%(XI + ~1 ) - xiyl = 1. 46. 

Figure 13 illustrates  the  system  in  the free-running 
condition. 



sponding  input  and  output  wave  shapes.  Figures 15 ana 
16 are  further  examples,   i l lustrating  the  driven con- 
dition  for  the  highest  and  lowest  expected  operating 
frequencies. 

f (  x) 
I 

FIGURE 13. PREDICTED  FREE-RUN  TRAJECTORY 
AND RELAY  OUTPUTS,  C = 5 pF 

FIGURE 14. PREDICTED DRIVEN  CONDITION  FOR 
TI = I. 0 SECOND, C = 5 pF 

Todetermine  whether  trajectories  corresponding 
to  values of IC greater  than unity  can  exist in the  ex- 
pected  frequency  range,  let  TI = .7143  seconds  in 
equation  (21)  to  obtain 

Now consider  the  effect of applying  an  input  I(t) 
with  period  TI = I. 0 recmds.  Equation ( 16)  supplies 
the  value x(  t) mus! have at  the  instant of y  relay 
switching  to  n!aintai~~. I?( !  periodic  trajectoly,   corre- 
sponding  to I< = I ,  as 

= 1.31 . 
a T  

4 x(  to) = c  tanh - - I - 2.02 . 

The   e r ro r  in  the  quadrature  phase  relationship is given 
by equation  (34)  as 

Figure  14  shows  the IC = i trajectory and the  corre-  

Since 

TI t i  - to = . 3602 > - = .36 , 2 
1 

higher  ordered  periodic  trajectories  should not exist. 
They  will  exist,  however,  for  only  slightly  higher  fre- 
quencies,   as  i l lustrated by Figure 17. The  period of 
the  drivingsignal of that  example  was  obtained  through 
use of equation  (25). 
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FIGURE 15.  PREDICTED DRIVEN CONDITION FOR 
TI = 0.7143  SECOND,  C = 5 pF 

. l - ? ,  2 c )  * l c .  2 C )  

0 
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-10 
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FIGURE i 6 .  PREDICTED DRIVEN CONDITION FOR 
TI = 1.43 SECOND,  C = 5 pF 

FIGURE 17. PREDICTED DRIVEN CONDITION FOR 
TI = 0.63  SECOND,  C = 5   p F ,  k = 3 

Figures IS  through 22 are  recordings macle during op- 
eration of the  circuit of Figure 11 and correspond  to 
the  predicted  cases of Figures  13  through 17.  Note 
particularly  the k = 3 subharmonic  lock-on  case of 
Figures 17  and 22. 

SECTION VII. CONCLUSION 

The  preceding  analysis  utilized  phase  space  tech- 
niques  to  investigate  the  behavior of the  lock-on  oscil- 
lator in  both the  free-running  and  driven  conditions. 
For  the  free-running  condition, it was  shown  that a 
stable  limit  cycle  exists  and  an  expression  obtained 
whichpermits  prediction of the  free-running  frequen- 
cy. In the  driven  case,  the  phase  space  technique  per- 
mits  determination of the  existence of a  periodic  tra- 
jectory  describing  satisfactoly  tracking of the  input 
signalfrequency.  From  the  form of such  a  trajectory, 
it  was  then  possible  to  obtain  an  expression  for  the 
e r r o r  in quadrature  phase  relationship  between  the 
two relay  outputs. In addition  to  the  existence of peri- 
odic  trajectories  indicating  satisfactory  tracking be- 
havior,  the  phase  plane  approach  indicated  the  exist- 
ence of additional  periodic  trajectories  which  describe 
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a subharmonic  tracking  behavior. It was  shown  that The  analysis  and results must  be  modified if the 
the  existence of such  operating  modes  occurs at rela- assumptions  on  equivalent  relay  outputs  and  input sig- 
tively low values of driving  signal  frequency, but  with nalmagnitudes are not  valid.  However,  the  techniques 
a suitable  choice of parameters  can  be  avoided  through used  shouldpermit  derivation of the  corresponding re- 
the  frequency  range  expected  for  the  particular  ap- sults.  This  comment is equally  applicable  to  the as- 
plication  discussed  in  this  report. sumption on equivalent  integrating  network  time  con- 

stants  and  relay  switching  levels. 

- 4ov 
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FIGURE 18. EXPERIMENTAL  RESULTS, TI = 1. 0 SECOND 

14 



80 v 

- YOV 

4ov 

i 
I U"7 

1 
1 
J 

FIGURE 19. EXPERIMENTAL  RESULTS, TI = 0.7143 SECOND 
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FIGURE 20. EXPERIMENTAL  RESULTS,  TI = I. 43 SECOND 
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FIGURE 21. EXPERIMENTAL  RESULTS, FREE-RUNNING 

.~ 

- 40 X' 
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FIGURE 22. EXPERIMENTAL  RESULTS, k = 3,  FOR TI = 0.63 SECOND 
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